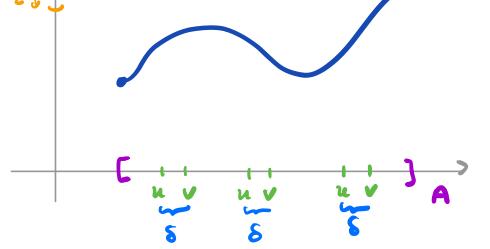
MATH 2050 C Lecture 23 (Apr 14)

[Last Problem Set 12 posted, due on Apr 22.] Last time: "Uniform" Continuity <u>Def</u>?: $f: A \rightarrow iR$ is uniformly continuous iff $\forall \epsilon > 0$, $\exists s = \delta(\epsilon) > 0$ s.t. $|f(u) - f(v)| < \epsilon$ when $u, v \in A$. |u - v| < sy = f(x)



Example: f(x) = x, x e i R unif. cts

Non-Examples: $f(x) = \frac{1}{x}$, $f(x) = \sin \frac{1}{x}$, $x \in (0,1)$ Not unificits

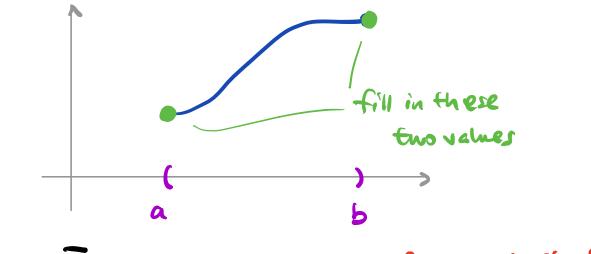
Uniform Continuity Thm	
f: [a.b] -> iR => f cts everywhere	: [a.b] -> iR unif. cts
E_{x} ample : $f(x) = x^2$ is un	if. cts on [-1,1]. from def ² .
We can also check directly Let 200 be fixed but ark	nitrem ?
LET 2 30 De TIREN DUT ET	
Choose $S = \frac{\varepsilon}{4} > 0$. Then	n u.ve(-1, 1] & lu-vi <s< th=""></s<>
Memerer U,V E [-1,1]	<pre></pre>
and $ u - v < 8$.	(1f(u) - f(u) 1 < E
we have	$c_{ie} u^2 - v^2 $ = u+v - u-v
1チ(11)- チ(1)	
$= (\alpha^2 - \gamma^2)$	$\begin{cases} \leq (u + v) \cdot u-v \\ \leq (1+1) \cdot u-v \end{cases}$
	5 < (1+1) . 14-11
$\leq (u + v) u - v $	= 28 < 8
∵u.v 6 [-1,1] < 2 <mark>5</mark> < <u>€</u>	

۵

Remark: f(x) = x2 is Not unif.cts on R

If $f: (a,b) \rightarrow \mathbb{R}$ is uniformly cts on (a,b), then \exists cts extension $\overline{f}: [a,b] \rightarrow \mathbb{R}$.

Continuous Extension Thm



WANT: $f(a) = \lim_{x \to a} f(x)$ $f(b) = \lim_{x \to b} f(x)$ $f(b) = \lim_{x \to b} f(x)$

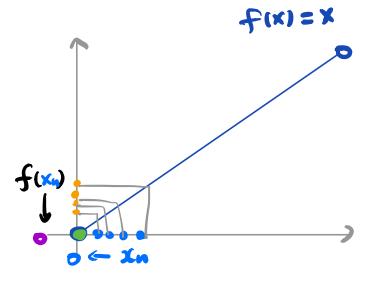
Lemme: Suppose f: A → iR is uniformly cts. (Xn) in A (f(Xn)) in iR Cauchy seq. Cauchy seq.

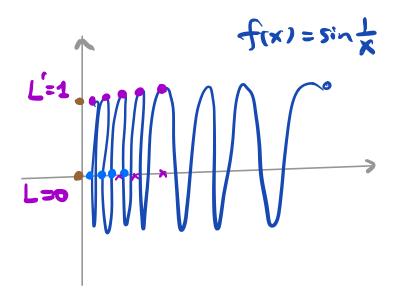
Proof. last lecture.

Proof of Continuous Extension Thm: It suffices to show that the limits limfix) & limfix) exist. x-34 x-36 Then, the extension $\overline{f}: [a,b] \rightarrow iR$ defined by $\widehat{f}(x) := \begin{cases} f(x), & x \in (a,b) \\ \lim_{x \to a} f(x), & x = a \\ \lim_{x \to a} f(x), & x = b \end{cases}$ Ex: Check this is indeed cts on [a.b]. Claim: limf(x) exists Pf of Claim: By Sequential Criteria, we need to find some L G R st. \forall Seq. (Xn) in (a.b) st. $\begin{cases} Xn \neq a \quad \forall n \in \mathbb{N} \\ lim(Xn) = a \end{cases}$ we have $(f(x_n)) \rightarrow L$

Step 1: Find ONE such L. Choose $x_n := a + \frac{1}{n} \in (a, b)$ when n is large Note: (Xn) -> a , hence is Canchy Lemma => (f(xn)) is also Cauchy ie must be convergent. sey $\lim (f(x_n)) = L$. Step 2 : Show that the limit L obtained in Step 1 is "unique", ie. does NOT depend on the choice of the seq (Xn). Suppose (In') is any other seq. in (a.b.) st $x_n' \neq a$ $\forall n \in \mathbb{N}$ & $\lim_{n \to \infty} (x_n') = a$ Argument in Step 1 => lim (f(xi)) = L' for some L'GR. We want to show L'=L.

Let $\frac{5}{200}$ be fixed but arbitrary.
By uniform continuity of f on (a.b).
= = = = = = = = = = = = = = = = = = =
f(u)-f(v) < € when 1u-vi≤S, u,v∈(a.b)
Idea: take U=Xn, V=Xn
Since $\lim(x_n) = \alpha = \lim(x_n')$,
$\exists \lim x_n - x_n' = 0$
i.e. 3 N=N(S) e IN st
lin-Iniles Ynz N
Therefore, InIN, we have
$ f(x_n) - f(x_n') < \varepsilon$
Take n - 20. by limit theorem
\L - L' ≤ €
But ε > 0 is arbitrary, so $L=L'$.





_ Final Exam up to here.